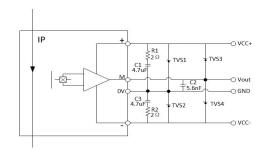


High Precision, Programmable Linear Hall Effect Sensor with up to +/-15V Supply and +/-12V Output Swing

Description

The SENKO® SL920 programmable linear Hall effect sensor has been designed to provide a fully integrated Hall current sensor IC for use in current sensing applications running off of a dual supply voltage. The high voltage design allows up to a +/-18V bipolar supply and has a nominal output swing of +/-12V. The SL920 employs a segmented, linearly interpolated temperature compensation technology, providing greater accuracy in sensitivity and offset voltage trimming and hence virtually zero temperature drift. This improvement does not degrade the high analog signal bandwidth of the device but greatly reduces total error over the operating temperature range.

The sensor incorporates a highly sensitive Hall element with a BiCMOS interface integrated circuit, a small-signal high-gain amplifier, a clamped low-impedance output stage, and a proprietary, high bandwidth dynamic offset cancellation technique. The SL920 Hall effect sensor is extremely fast and temperature stable providing an open loop Hall effect solution that can compete with more expensive closed loop devices.


The sensor is available in an ultra-thin (1.6 mm thick), through-hole single in-line package (TO94)

Features and Benefits

- Proprietary segmented, linearly interpolated temperature compensation (TC) technology provides a typical accuracy error of 1.5% over the full operating temperature range
- High sensitivity Hall element for maximum accuracy
- Extremely low noise and high resolution achieved via proprietary Hall element and low noise amplifier circuits
- Less than 5µS fast response time achieved via advanced packaging and chopper stabilization techniques
- Customer programmable, high resolution offset and sensitivity trim
- Factory programmed sensitivity and quiescent output voltage TC with extremely stable temperature performance
- Up to +/-18V supply voltage range and +/-12V output voltage swing with nominal zero field quiescent voltage level at 0V
- Customer programmable sensitivity range between 1.4 and 20 mV/G
- Precise recoverability after temperature cycling
- Wide ambient temperature range: -40°C to 105°C Extremely thin package: 1.6mm case thickness provides magnetic circuit flexibility in current sensing applications

Typical Application

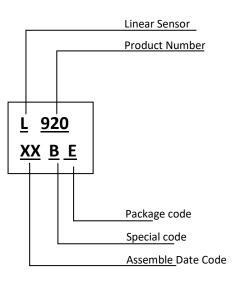
• Support 0 ~ ±1000A Dynamic range

Note:

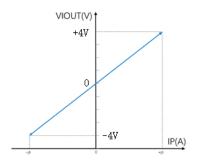
- 1. R1/C1 R2/C3 is necessary to reduce hot swap damage;
- 2. TVS is designed for limiting inrush current /voltage surging

Package: TO94

Top View:



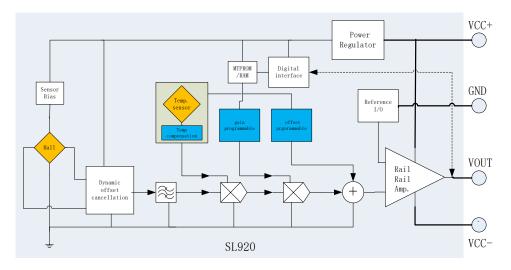
• Order information


Part Number	Special Code	Packaging	Temp Range	Packing	Selection guide
SL920-BEE	В	TO94 (E)	E		typical
SL920-BHE	В	TO94 (H)	(-40~105°C)	1k/Bag	Lowest lifetime drift

Mark Description

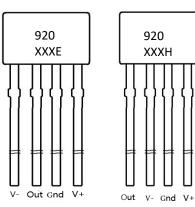
• Typical I/O Curve

Input Current vs. output Voltage



SL920

www.senkomicro.com


• Functional Block Diagram

• Pin-out Diagrams

Package E

Package H

Package E	Package H	Pin name	Description				
1	2	V-	Negative power supply				
2	1	VIOUT	Output signal, and digital I/O				
3	3	GND ¹	Ground and zero current reference				
4	4	V+	Positive power supply				
	Note1: low impedance design in PCB layout						

www.senkomicro.com

Absolute Maximum Ratings

Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

Characteristic	Symbol	Notes	Rating	Unit
Positive Supply Voltage	V ₊ -V.		36	V
Output Voltage	VOUT		+18 to -18	V
Output Sourcing Current	IOUT(SOUR CE)	VOUT to GND, for a maximum of 60 Seconds, minimum Resistive Load of 1Kohms to GND, maximum capacitive load of 1000pF to GND. Vout = +12V	5	mA
Output Sinking Current	IOUT(SINK)	VOUT to GND, for a maximum of 60 Seconds, minimum Resistive Load of 1Kohms to GND, maximum capacitive load of 1000pF to GND. Vout = -12V	-5	mA
Operating Ambient Temperature	ТА		-40 to 105	°C
Storage Temperature	Tstg		-65 to 165	°C
Maximum Junction Temperature	TJ(max)		165	°C
ESD		HBM	4	kv

Common operating Characteristics

Note: Over full range of T_A =-40°C ~ 105°C, C_{Bypass} =4.7uf, R_{filter} =2 Ω , C_{Load} =3.3nF, V_{CC} =+-15V, unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage	V+-V-	Operating	22	30	36	V
Supply Current	I _{CCV+}	output open		10	12	mA
Supply Current	I _{CCV-}	output open		-5	-7	mA
Output Capacitance Load	CLOAD	V _{IOUT} to GND	1.5	3.3	20	nF
Output Resistive Load	R _{LOAD}	V _{IOUT} to GND	4.7			kΩ
Response Time	tr	$I_P = I_P(max), T_A = 25^{\circ}C, C_{OUT} = open$		4.0	5	μS
Frequency Bandwidth	f	−3 dB, T _A =25°C; I _P =50 A peak-to-peak		120		kHz
Nonlinearity	E _{LIN}	Over full range of I _P		0.3	1	%
Symmetry	E _{SYM}	Over full range of I _P		100		%
Power-On Time	T _{po}	Output reaches 90% of steady-state level, $T_J = 25^{\circ}$ C, 3 A present		100	500	uS
Power supply bypass capacitor	C _{bypass}	Normal operating	4.7	4.7	10	uF

Common Thermal Characteristics

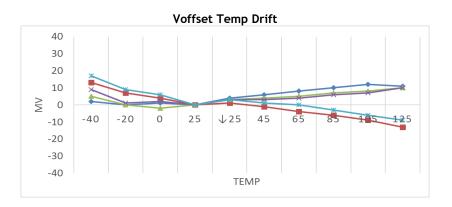
Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Operating Internal Lead Frame	TA	E range	-40		-105	°C
Temperature						
Junction-to-Lead Thermal	R _{θJL}				10	°C/W
Resistance						
Junction-to-Ambient Thermal	R _{θJA}				30	°C/W
Resistance						

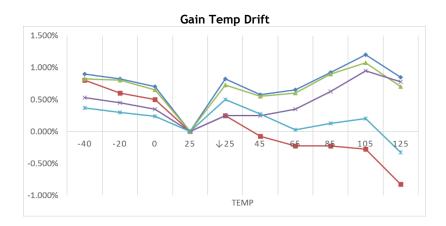
www.senkomicro.com

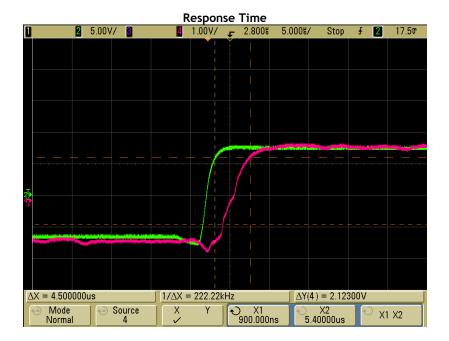
SL920-BEE Individual Performance Characteristics

Note: TJ(max) is not exceeded, TA=-40°C ~ 105°C, C_{Bypass}=4.7uF, C_{Load}=3.3nF, VCC=+-15V, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Optimized Accuracy Range	Vip		-4		4	V
Linearity range			-12		+12	
VIOUT @ 0mT	V _{OQ}	IP=0mT, T _A =25°C		0		V
Sensitivity range	Sens	Over full of T _A =25°C	1.4		20	mV/mT
	ΔI _{OUT(Q)}	T _A = -40~25°C		±40		mV
Zero Current Output Slope		T _A = 25~105°C		±30		mV
Sensitivity Slope	ΔSens	T _A = -40~25°C		±1.6		%
		T _A = 25~105°C		±1.5		%
Total Output Error	Е _{тот}	T _A =25°C, output filtered		±1		%
		T _A =-40°C ~ 105°C, output filtered	-3		3	%
Thermal stress and life time drift			-1		+1	%

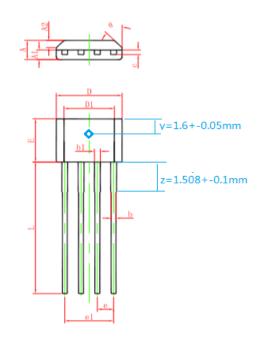

SL920-BHE Individual Performance Characteristics


Note: TJ(max) is not exceeded, TA=-40°C \sim 105°C, C_{Bypass}=4.7uF, C_{Load}=3.3nF, VCC=+-15V, unless otherwise specified


Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Optimized Accuracy Range	Vip		-4		4	V
Linearity range			-12		+12	
VIOUT @ 0mT	Voq	IP=0mT, T _A =25°C		0		V
Sensitivity range	Sens	Over full of T _A =25°C	1.4		20	mV/mT
	ΔI _{OUT(Q)}	T _A = -40~25°C		±40		mV
Zero Current Output Slope		T _A = 25~105°C		±30		mV
Sensitivity Slope	ΔSens	T _A = -40~25°C		±1.6		%
		T _A = 25~105°C		±1.5		%
Total Output Error	Е _{тот}	T _A =25°C, output filtered		±1		%
		T _A =-40°C ~ 105°C, output filtered	-2.5		2.5	%
Thermal stress and life time drift			-0.3		+0.3	%

Typical Performance Graphs

Programming Serial Interface


The SL920 incorporates a serial interface that allows an external controller(SP102) to read and write registers in the ROM and volatile memory. And the auto. calibration software can be downloaded in our website

The temperature coefficient of sensitivity and offset are factory programmed and the following parameters of SL920 are user programmable:

- Sensitivity (mV/G)
- Zero Field Output Voltage
- Output polarity

Package 4-Pin (TO94)

Symbol	Dimensions	In Millimeters	Dimension	s in inches	
Symbol	Min.	Max.	Min.	Max.	
A	1.400	1.800	0.055	0.071	
A1	0.700	0.900	0.028	0.035	
A2	0.500	0.700	0.020	0.028	
b	0.360	0.500	0.014	0.020	
b1	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.980	5.280	0.196	0.208	
D1	3.780	4.080	0.149	0.161	
E	3.450	3.750	0.136	0.148	
е	1.270	TYP.	0.050	O TYP.	
e1	3.710	3.910	0.146	0.154	
L	14.900	15.300	0.587	0.602	
θ	45°	TYP.	45° TYP.		

For Reference Only

Dimensions in millimeters

Exact case and lead configuration at supplier discretion within limits shown

Active Area Depth, 0.28mm REF

Reference land pattern layout

All pads a minimum of 0.20mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances

Branding scale and appearance at supplier discretion

Hall element, not to scale

Important Notice

SENKO micro-electronics co., Ltd. Reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

SENKO micro's products are not to be used in life support devices or systems, if a failure of an SENKO product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, SENKO micro-electronics co., Ltd. Assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website: www.senkomicro.com

Revision Table

Revision	Change	Page	Author	Date
1.0	Initial draft		Jon	2017.01
1.1	Add application note		Jon	2018.06
1.2	Update application circuit.		Tom	2018.11
2.0	Add package type and selection guide		Jon	2019.06